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Abstract: Spatially focal source estimates for magnetoencephalography (MEG) and electroencephalogra-
phy (EEG) data can be obtained by imposing a minimum ‘1-norm constraint on the distribution of the
source currents. Anatomical information about the expected locations and orientations of the sources can
be included in the source models. In particular, the sources can be assumed to be oriented perpendicular
to the cortical surface. We introduce a minimum ‘1-norm estimation source modeling approach with
loose orientation constraints (‘1LOC), which integrates the estimation of the orientation, location, and
strength of the source currents into a cost function to jointly model the residual error and the ‘1-norm of
the source estimates. Evaluation with simulated MEG data indicated that the ‘1LOC method can provide
low spatial dispersion, high localization accuracy, and high source detection rates. Application to somato-
sensory and auditory MEG data resulted in physiologically reasonable source distributions. The proposed
‘1LOC method appears useful for incorporating anatomical information about the source orientations into
sparse source estimation of MEG data. Hum Brain Mapp 34:2190–2201, 2013. VC 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Magnetoencephalography (MEG) and electroencephalog-
raphy (EEG) are techniques to noninvasively detect extra-
cranial magnetic fields and scalp potentials elicited by elec-
trical activity in the human brain. In distributed source
modeling of MEG and EEG data, the amplitudes and orien-
tations of a large number of current sources at predeter-

mined locations are estimated [Baillet et al., 2001]. This is
achieved by minimizing a cost function, which usually con-
sists of two terms, one describing the modeling errors and
the other a constraint on the source amplitudes. A popular
method called the minimum-norm estimate (MNE) is based
on a linear inverse operator that minimizes the ‘2-norm of
the source amplitudes [Hämäläinen and Ilmoniemi, 1984].
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The MNE tends to provide diffuse source estimates even
when the true source currents are focal. One way to con-
struct less diffuse source estimates is to impose a minimum
‘1-norm constraint on the source amplitudes [Matsuura and
Okabe, 1995; Uutela et al., 1999].

A priori anatomical and physiological information about
the locations and orientations of the sources can be incor-
porated into distributed source models. Specifically, the
source currents can be assumed to be located at the cere-
bral cortex and oriented perpendicular to the cortical sur-
face [Dale and Sereno, 1993]. An accurate orientation
constraint can improve the MEG localization accuracy [Lin
et al., 2006a; Robinson and Vrba, 1999]. However, a strict
orientation constraint (SOC), which enforces the current
dipoles to be exactly perpendicular to the local cortical
surface, can lead to inaccurate source estimates if the
source space is too sparse with respect to the curvature of
the cortical surface. Source space subsampling is moti-
vated by the limited spatial resolution intrinsic to MEG
and by practical concerns of computational efficiency. The
downside of such subsampling is that the simplified
source geometry does not take into account the variation
in the cortical surface orientation near each subsampled
current source location. Therefore, the orientation of the
source element at the location closest to the true activation
does not necessarily match the orientation of the actual
source. In this case, the largest current in the source esti-
mate is likely to occur at a nearby location with a source
orientation matching that of the true source. Moreover,
inaccurate source estimates can also be caused by errors in
the coregistration between MEG/EEG and MRI data. To
alleviate these problems, a loose orientation constraint
(LOC) on the source currents was introduced [Lin et al.,
2006a]. Typically, the source space in distributed source
models consists of current dipoles placed at fixed locations
3 to 10 mm apart from each other. With the LOC
approach, it is possible to take into account the variability
of the source orientations within a cortical patch around
each selected source location by weighting the perpendicu-
lar and tangential source components differently.

Previously, LOC has been applied to minimum ‘1-norm
estimation indirectly [Lin et al., 2006a], by first determin-
ing the source orientation using the ‘2-based MNE solu-
tion, as in the MCE method [Uutela et al., 1999], but
computed with LOC. The minimum ‘1-norm constraint
was used to determine the strength of this fixed-orienta-
tion source at each location [Lin et al., 2006a]. Here we call
this previously presented method MCELOC. A potential
problem with this approach is that incorrect source orien-
tations from the MNE may result in mislocalization of the
sources. In a related approach called VESTAL, MNE was
also employed before applying the minimum ‘1-norm con-
straint, but instead of strictly constraining the source ori-
entations, only the sign of each directional component was
used [Huang et al., 2006]. However, the minimum ‘1-norm
constraint tends to bias current estimates to be oriented
along the x-, y-, or z-direction. Although this bias can be

reduced by imposing different weights on the three or-
thogonal directions [Huang et al., 2006], ideally the source
estimates should be invariant with respect to the choice of
the local coordinate axes. One way to achieve this invari-
ance is to subject the directional components to the mini-
mum ‘2-norm constraint at each source location [Ding and
He, 2008; Ou et al., 2009]. The source strengths and orien-
tations of the minimum ‘1-norm solution can be deter-
mined directly using second-order cone programming
(SOCP) [Mittelmann, 2003], without involving MNE. In a
sense, the minimum ‘1-norm and minimum ‘2-norm con-
straints are applied at different spatial scales: locally the
orientation of the estimated source current is allowed to
vary freely, and globally a spatially sparse source distribu-
tion is preferred.

In the present study we propose to incorporate LOC
into the joint minimum ‘1‘2-norm method. With this
approach, named ‘1LOC, a priori constraints on the rela-
tive weights on the source components can be imposed,
without relying on the MNE to fix the orientations. Using
simulated and real MEG data, we demonstrate that the
‘1LOC approach has the potential to improve the accuracy
of localizing focal sources. In this article, we consider only
MEG, but the principles are expected to be applicable to
EEG as well.

METHODS

Forward Model

The relationship between the measured MEG signals
and the underlying neuronal currents can be modeled as:

yðtÞ ¼ A sðtÞ þ nðtÞ (1)

where y(t) is an m-dimensional vector containing the
observed data in m sensors at time t, A is an m-by-3n for-
ward matrix, s(t) is a 3n-dimensional vector representing
the unknown current sources consisting of the x-, y-, and
z-components of n current dipoles, and n(t) is additive
noise. Usually 3n is much larger than m and thus the ma-
trix A has more columns than rows. For convenience, we
assume that Eq. (1) describes prewhitened data such that
the data vector, the forward matrix, and the noise vector
have been multiplied by C21/2, where C is the estimated
noise covariance matrix of the unwhitened data [Lin et al.,
2006a]. The prewhitening process allows us to assume that
the noise measurements on different sensors are spatially
uncorrelated. We also assume that the forward matrix A is
constructed such that the (3i)th column of A represents the
signals in the MEG sensors that would be generated by a
current dipole oriented normal to the cortical surface (local
z-direction) at the ith source location. The (3i 2 1)th and (3i
2 2)th columns of A correspond to the signals generated
by a unit dipole in the local x and y directions,
respectively.
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Minimum ‘1-Norm Estimates With Orientation
Constraints

Source estimation refers to the problem of determining
s(t) for given data y(t) and known forward matrix A. In
the present study we will only consider instantaneous
source estimates; therefore, to simplify the notation, we
leave out the explicit time dependence. The minimum ‘1-
norm constraint [Lin et al., 2006a; Matsuura and Okabe,
1995; Uutela et al., 1999] can be written as

arg min
s

sj jj j1¼ arg min
s

P
i
ðjsi;xjþjsi;yjþ jsi;zjÞ;

s:t: yr %Ars
!! !!!! !!2

2
& e; (2)

where Si,x, Si,y, and Si,z are the three local source compo-
nents at location i. Here yr ¼ UT

r y and Ar ¼ UT
r A are the

regularized versions of the measurement data vector and
the forward matrix, respectively, obtained with the help
of a truncated singular value decomposition of A ¼
UKVT. The matrix Ur contains the first r columns of U,
corresponding to the r largest singular values of A. The
regularization by truncation helps to reduce sensitivity to
noise, and the lower rank of the forward matrix reduces
the computational load [Uutela et al., 1999]. The number
of truncated singular vectors is selected to control the
total lead field power [Lin et al., 2006a]. The parameter e
in Eq. (2) controls the consistency between the measured
data and the values predicted from the estimated sources.
In the MCE approach, e was set to zero [Uutela et al.,
1999]. However, one can choose e such that the probabil-
ity of kyr 2 Arsk2

2 [ e is small [Ding and He, 2008].
Assuming Gaussian white noise with variance r2, we
have kyr 2 Arsk2

2/r2 ' vr
2, where vr

2 is the Chi-square
distribution with r degrees of freedom. In practice, e can
be selected such that the probability of the random vari-
able kyr 2 Arsk2

2 ranging between [0, e] equals to a prede-
fined value (such as 0.99).

The source estimates obtained using Eq. (2) tend to
align along the coordinate axes at each source location
[Huang et al., 2006]. A solution that is invariant with
respect to the choice of the local coordinate axes is
obtained by minimizing the ‘1-norm of a vector whose ele-
ments are the ‘2-norm of the estimated source current si at
location i:

sij jj j2¼ s2
i;x þ s2

i;y þ s2
i;z

h i1=2
: (3)

In the present study, we propose imposing a loose con-
straint on the orientation for each source by using a
weighted ‘2-norm kWisik2. We use the specific form

Wi ¼ diag½1= sin hi; 1= sin hi; 1) (4)

for each location i [Lin et al., 2006a]. The orientation con-
straint parameter hi , ranging from 0* to 90*, allows differ-
ent relative proportions between the local perpendicular

(z-) and local tangential (x- and y-) components. In the
practical implementation, we used

Wisij jj j2¼ ð si;x

sin hi þ d
Þ2 þ ð

si;y

sin hi þ d
Þ2 þ ðsi;zÞ2

" #1=2

(5)

where the minimum positive floating-point value d was
included to avoid division by 0 in Eq. (4). When hi ¼ 90*,
then Wi ¼ I (identity matrix), corresponding to the free ori-
entation (FO) case. When hi ¼ 0* only z-direction compo-
nents are allowed and this is equal to the strict orientation
constraint (SOC) case. The minimum ‘1-norm solution with
hi ¼ 90* and hi ¼ 0* are called ‘1FO and ‘1SOC, respectively.

The weighting as specified in Eq. (4) will cause some
bias between source locations with different hi, as the
squared inverse of Wi can be interpreted to be the a priori
source covariance matrix. To equalize the a priori source

power, a normalization factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sin2 hi þ 1

p
could be

applied. Since the effect of this adjustment is expected to

be small (the factor ranging from 1 to
ffiffiffi
3
p

), we did not
implement it in our calculations. However, appropriate
normalization is important when additional priors are
included, such as depth weighting (or lead field normal-
ization) [Lin et al., 2006b] or fMRI-based constraints.

With the loose orientation constraint, Eq. (2) is modified
to be

arg min
s

X

i

Wisij jj j2;

s:t: yrðtÞ %Ars
!! !!!! !!2

2
& e:

(6)

Since the feasible set of kyr 2 Arsk2
2 & e is a convex set

and
P

i
jjWisijj2 is a convex function [Boyd, 2004], Eq. (6)

can be solved by convex optimization techniques [Grant
and Boyd, 2009]. Specifically, we used the following con-
vex formulation of the optimization problem to solve s via
an auxiliary variable s‘2:

arg min
s;s‘2

s‘2
!! !!!! !!

1

s:t: yr %Ars
!! !!!! !!2

2
& e; and

(7a)

Wisij jj j2& s‘2i ;8i ¼ 1; : : : ; n: (7b)

When ks‘2k1 has the minimum, the inequality constraint in Eq.
(7b) is satisfied with the equality and ks‘2k1 is reduced to the
sum of kWisik2 across all source locations. This is exactly the
‘1-norm of the vector, each element of which is the local
‘2-norm of the three weighted directional source components.

Variation of the Surface Normal Within Cortical
Patches

Due to the spatial smoothness of MEG lead fields and for
considerations of computational efficiency, distributed source
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modeling approaches usually employ a spacing of 5 to 10 mm
between neighboring dipoles in a discrete source space
[Uutela et al., 1999]. Hence, the orientation of the source cur-
rents may vary considerably within a patch of curved cortical
surface surrounding each dipole location. A cortical patch can
be defined as the set of vertices in the original dense cortex tri-
angulation sharing the same nearest subsampled dipole loca-
tion [Lin et al., 2006a]. Within each cortical patch i, we
computed the standard deviation rh

i of the angle between the
vertex normals nk in the dense cortex triangulation and the
surface normal ni at the subsampled location:

rh
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ni % 1

X

k2Pi

½arccosðnk + niÞ %
1

Ni

X

k2Pi

arccosðnk + niÞ)2
s

ð1 & i & nÞ ð8Þ

where Ni denotes the number of vertices within the corti-
cal patch Pi.

For the orientation constraint parameter hi in Eq. (5), we
propose to use the values

hi ¼ arh
i ; (9)

where a is to be optimized using simulations. However,
since computing rh

i for each source location is computa-
tionally demanding, we also examined the simpler case
of setting hi to a constant value across the whole
cortex.

Performance Measures

The performance of the inverse solutions was assessed
with three metrics: spatial dispersion (SD) [Molins et al.,
2008], distance of localization error (DLE) [Molins et al.,
2008], and the area under a receiver operating characteris-
tic (ROC) curve [Darvas et al., 2004].

The SD was defined as:

SD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PK

k¼1

P
i2Ik

d2
ki ŝij jj j22

Pn

i¼1
ŝij jj j22

vuuuuuut
; Ik ¼ i k ¼ arg min

k

!!!!! dkif g

( )
;

1 & k & K;

(10)

where ŝi is the estimated source current at location i, dki

denotes the distance between the kth true source and the
ith source estimate, and -K is the number of the underlying
current sources. Ik is the set of source space indices for
which the kth of true sources is the spatially closest. To
avoid overriding contributions from source estimates with
small values but large distances, only source estimates
with magnitude exceeding 10% of the global maximum
were taken into the calculation of Ik.

The DLE was defined as

DLE ¼ 1

KJ

X

k2J

DLEk; J ¼ fk
!!Ik=2 /g;

DLEk ¼ dki

!!!i ¼ arg max
i0
f ŝi0j jj j2g; i

0 2 Ik

% &
; ð11Þ

where KJ denotes the number of elements in J, which is
the set including indices of the detected true sources. The
DLEk measures the distance between the kth true source
and maximum source estimate in Ik and DLE is the aver-
age of DLEk over the true source indices k.

A receiver-operating characteristic (ROC) curve is a
graphical plot of the rate of true positive detection (TP)
versus the rate of false-positive detection (FP) as its dis-
crimination threshold varies. In our study, the discrimina-
tion threshold ranged from 0% to 100% of the maximum
of source estimates. The FP and TP were defined as

FP ¼ Nfd

n%Ns
and TP ¼ Nd

Ns
; (12)

where Nd and Nfd are the number of detected true and false
sources, respectively. The number of total estimated sources
at a given threshold is Nd 1 Nfd and the number of true
sources is Ns. We calculated the area under the ROC curve
(0.5 & area & 1) to quantify the performance of the inverse
methods. The ideal performance corresponds to area ¼ 1.

MATERIALS

Anatomical Information From High
Resolution MRI

Structural MRI data were acquired on a 3T MRI scanner
(Tim Trio, SIEMENS Medical Solutions, Erlangen, Ger-
many) using a T1-weighted 3D MPRAGE sequence with
following parameters: repetition time/echo time/inversion
time [TR/TE/TI] ¼ 2,530/3.49/1,100 ms, flip angle ¼ 7
degrees, partition thickness ¼ 1.33 mm, image matrix ¼
256 , 256, 128 partitions, and a field-of-view ¼ 21 , 21
cm2. We used the FreeSurfer software [Dale et al., 1999;
Fischl et al., 1999] to perform segmentation and to build
cortical surface meshes from the MRI data. These cortical
surfaces were used to generate the source space in MEG
sources analysis, to calculate the forward solution A with
realistic anatomy, and to visualize the source localization
results. The cortical surface was defined using the bound-
ary between the gray and white matter. FreeSurfer gener-
ated triangulated surface models with 130,000 to 150,000
vertices per hemisphere, separated by approximately 1
mm from each other. The source space used for the MEG
source estimation was created by subsampling the cortical
vertices into a semiregular model with 1,026 dipole loca-
tions in each hemisphere; the average distance between
any two neighboring source dipoles was 10 mm. The
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coregistration between MEG and MRI coordinates was
done by manually registering in the MPRAGE data three
fiducial points and a set of points on the scalp whose loca-
tions were identified with a digitizer with respect to head
position indicator coils used in the MEG sessions. The
MEG forward solution was calculated using a single layer
boundary element model (BEM) [Hämäläinen and Sarvas,
1989; Oostendorp and van Oosterom, 1989] based on the
inner-skull surface created by the FreeSurfer.

Simulated MEG Data

Simulated MEG data were generated by assuming three
simultaneously active focal sources at randomly selected
locations within three cortical regions [one source per region:
the left primary somatosensory cortex (SI), the left middle
temporal gyrus (MTG), and the right inferior frontal gyrus
(IFG)]. In additional simulations, we selected two sources at
fixed locations at the SI and the secondary somatosensory
cortex (SII) in the left hemisphere, corresponding to expected
source locations in our somatosensory experiment.

The orientation of each source was varied randomly
over repeated simulations, such that the average orienta-
tion equaled to the surface normal at that location, and the
standard deviation of the orientation equaled to rh

i . Gaus-
sian noise was added to the simulated data with signal-to-
noise power ratio (SNR) of 25. The SNR was defined as
kAsk2

2/mr2
n, where r2

n denotes the noise variance. The cal-
culation was repeated 100 times.

To avoid the ‘‘inverse crime’’ of using identical forward
solutions for generating simulated data and for computing
the inverse estimates [Kaipio and Somersalo, 2005], which
often leads to overly optimistic localization performance,
we generated two forward solutions using different source
space grids. Simulated data were generated with an average
of 2.5 mm separation between sources, whereas the inverse
solution was calculated with an average of 10 mm separa-
tion. Each source space was constructed independently; the
one with an average of 10 mm separation was not a subset
of the source space with an average of 2.5 mm separation.

Errors in the coregistration between MEG/EEG and
MRI data are one potential cause of inaccuracy in SOC
source estimates. To examine the effect of coregistration
error, we generated simulated MEG data with the original
forward matrix but calculated the inverse solution with a
forward matrix obtained by randomly shifting the head
position by 1, 2, 4, or 8 mm, yielding an inaccurate coordi-
nate transformation and thus an incorrect forward matrix.

MEG Experiments

To test the method with empirical data, we performed
somatosensory and auditory MEG experiments. Six
healthy, right-handed subjects (four males, two females;
average age ¼ 27 years) participated, with the approval of
the Institutional Review Board (IRB) of National Taiwan

University. Before the experiments, an informed consent
was obtained from each subject. A 306-channel MEG sys-
tem (VectorView, Elekta-Neuromag, Helsinki, Finland)
was used to record the neuromagnetic responses.

In the somatosensory study, the right median nerve was
stimulated at the wrist with current pulses of 0.2 ms dura-
tion (Konstant-Strom Stimulator, Lucius & Baer, Ger-
etsried, Germany). The amplitude of the stimulation was
adjusted to clearly observe thumb adduction. The intersti-
mulus interval was 5 s. We collected 180 responses in each
subject. In the auditory experiment, 1 kHz pure tones
were presented to the right ear. The interstimulus interval
was 4 s. About 100 responses were averaged. The mea-
surement bandwidth was 0.03 to 260 Hz and the data
were digitized at 1004 Hz.

Implementation

To perform convex optimization, we employed the CVX
software package [Grant and Boyd, 2009] in MATLAB
(Mathworks, Natick, MA). This method converged within
100 iterations in all our simulations and experiments. The
number of rows for truncated SVD-regularized forward
matrix r was selected in order to include 99% of the total
lead field power. For the six subjects in the present study,
the truncation parameter r [Eq. (2)] ranged from 46 to 77
for the full A matrix (FO case). The r value for the reduced
A matrix for the SOC case (containing only every third
column of the full forward matrix) were similar, with only
1 to 4 additional SVD components being truncated. Fur-
thermore, a minor change in r will be partly compensated
by an adjustment of the value of e in Eq. (6). Since small
changes in r were expected to affect the solutions only lit-
tle, we used the same FO-based r value for an individual
subject when computing the inverse solutions with vary-
ing levels of orientation constraints. For r ¼ 77 (the rank of
the regularized forward matrix) and n ¼ 2,052 (the num-
ber of source locations) in our study, calculation of the
‘1LOC estimate for one time point of MEG data took about
68 s on a standard PC (1.6 GHz CPU and 2G bytes RAM).

For visualization, the source estimates were normalized
by the maximum value in each map. The magnitude of
the estimated activity for individual source elements may
differ substantially due to differences in the spatial spread
of the inverse solutions. For example, a factor of 2 differ-
ence in the magnitude could result from assigning all esti-
mated source activity to a single source element versus
spreading the activity to two neighboring locations. There-
fore, the normalization helps to better illustrate the local-
ization precision of the different approaches.

RESULTS

Variability in Source Orientations

We first examined how much variability in the source
orientation is expected within the local patches of curved
cortex around the discrete locations used for the MEG
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source modeling. An example of the spatial distribution of
rh

i is shown in Figure 1a. Combined data from six subjects
indicated that 25%, 50%, 75%, and 95% of the orientation
deviations of the vertex normals were less than 18*, 25*,
32*, and 45*, respectively (Fig. 1b).

Simulations

The sensitivity of the ‘1LOC method to the choice of the
orientation constraint parameter hi was evaluated using
three simulated sources randomly selected from the vicin-

ity of the left SI, left MTG, and right IFG areas (see inset
in the top left panel in Fig. 2a). Performance metrics for
the spatially varying case where hi ¼ arh

i are shown in
Figure 2a. The error measures SD and DLE were smallest
when a ¼ 1.5. The area under the ROC curve for hi ¼
0.5rh

i , rh
i , 1.5rh

i , 2rh
i was 0.96, 0.98, 0.99, and 0.99, respec-

tively. The performance with hi ¼ 1.5rh
i was statistically

significantly better than the performance with hi ¼ 0.5rh
i

and hi ¼ rh
i in terms of SD and DLE (P \ 0.01). However,

the difference between the performance with hi ¼ 1.5rh
i

and hi ¼2rh
i was not significant in any of the three

Figure 2.
Performance metrics (SD, DLE, and ROC) for ‘1LOC estimates
for simulated MEG data, as a function of different values of the
loose orientation constraint parameter hi. Three current dipole
sources were randomly selected, one from each of the green
regions shown in the inset. The standard deviation of the

orientation of the simulated dipoles was rh
i . The parameter hi

was either (a) spatially varying, being proportional to rh
i , or (b)

spatially uniform, having a constant value for each source
location. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

Figure 1.
Distribution of the standard deviation rh

i of the angle between
the vertex normals within the cortical patches surrounding dis-
crete source locations. (a) The spatial distribution of rh

i for one
subject (S1), shown on the lateral and medial view of an inflated
reconstruction of the left cerebral cortex. The spacing between

neighboring source locations was 10 mm; the total number of
source locations was around 3,500. (b) A histogram of the rh

i

values in six subjects. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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performance measures (P [ 0.1). Figure 2b shows the per-
formance metrics when constant values of hi were used
across the source locations. The performance with hi ¼ 32*

was better than with hi ¼ 18* and hi ¼ 25* in terms of SD
and DLE (P \ 0.05). However, the performance with hi ¼
32* was not significantly better than with hi ¼ 45* in any
of the three performance measures (P [ 0.4). The area

under the ROC curve for hi ¼ 18*, 25*, 32*, and 45* were
0.98, 0.99, 0.99, and 0.99, respectively. Moreover, when
comparing the performance with hi ¼ 1.5rh

i versus hi ¼
32*, no statistically significant differences were observed
(P ¼ 0.66 for SD, P ¼ 0.16 for DLE, and P ¼ 0.46 for the
area under ROC). In the rest of this study, we used hi ¼
1.5rh

i unless otherwise noted.

Figure 3.
Performance metrics SD, DLE, and ROC for the four different minimum ‘1-norm solutions:
MCELOC, ‘1SOC, ‘1FO, and ‘1LOC. The locations of three true current sources were ran-
domly selected from each of the three regions shown as green patches in the inflated cortical
map. [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

Figure 4.
Examples of minimum ‘1-norm source estimates for simulated
MEG data, obtained with the MCELOC, ‘1SOC, ‘1FO, and
‘1LOC approaches. The true sources (left column) consisted of
two focal sources corresponding to the somatosensory areas SI
and SII in the left hemisphere. The estimates were normalized
by dividing by the maximum value in each map. The activation

strength is shown color-coded on an inflated cortical surface;
dark and light gray denote sulcal and gyral regions, respectively.
The dashed box indicates the region enlarged for better visual-
ization. The blue arrows denote false-positive locations. [Color
figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]
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Performance metrics for simulated MEG data using
four different source estimates subjected to the minimum
‘1-norm constraint are shown in Figure 3. The error meas-
ures SD and DLE were smaller for ‘1LOC than for MCE-
LOC, ‘1SOC, and ‘1FO. The areas under the ROC curve for
MCELOC, ‘1SOC, ‘1FO, and ‘1LOC were 1.00, 0.96, 0.99,
and 1.00, respectively. The ‘1LOC outperformed the other
methods in almost all the performance metrics. Compared
with ‘1LOC, the SD and DLE values were significantly
different for MCELOC, ‘1SOC, and ‘1FO (P < 0.0001 in all
cases). Although the areas under ROC for MCELOC and
‘1FO were not significantly different from that for ‘1LOC
(P ¼ 0.72 for MCELOC and P ¼ 0.29 for ‘1FO), the area
under ROC for ‘1LOC was significantly larger than that for
‘1SOC (P ¼ 3.71 , 10%5). In general, ‘1LOC provided higher
estimation accuracy compared with the other approaches.

Figure 4 illustrates an example of the different source
estimates when two simulated sources were assumed in SI
and SII in the left hemisphere. In this particular case, the
maps of the MCELOC, ‘1SOC, and ‘1FO solutions showed
false-positive activity (indicated by blue arrows in Fig. 4)

in addition to the correct location. The ‘1LOC solution
showed only minimal false-positive activation.

The effect of coregistration error on the performance
metrics SD and DLE are shown in Figure 5a. In this simu-
lation, two focal current sources were assumed at the left
SI and SII. The ‘1LOC solution consistently outperformed
the ‘1SOC solutions in the presence of coregistration error.
We also examined the effect of the scaling factor a for rh

i

in Eq. (9), with different coregistration errors (Fig. 5b). The
differences in the performance measures were small, sug-
gesting that the choice of hi ¼ 1.5rh

i is suitable even in the
presence of coregistration errors.

Somatosensory and Auditory MEG Experiments

We applied the minimum ‘1-norm estimation methods
with different orientation constraints to localize the neuro-
nal current sources in the somatosensory and auditory
experiments. Figure 6 shows source estimates for the
somatosensory data of one subject using ‘1SOC, ‘1FO,

Figure 5.
Effect of coregistration error on the performance measures SD and DLE. The source estimates
were calculated using an incorrect forward solution caused by a shift in the head position. (a)
Comparison of the ‘1SOC and ‘1LOC source estimates. (b) Performance of the ‘1LOC method
using different values of the loose orientation constraint hi ¼ arh

i . [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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‘1LOC with hi ¼ 1.5rh
i , and ‘1LOC with hi ¼ 32*. All meth-

ods localized the early somatosensory response at about
21 ms latency into the posterior wall of the central sulcus,
corresponding to the primary somatosensory cortex SI,
and a later response, here shown at 87 ms, to the region of
the secondary somatosensory cortex SII in the Sylvian fis-
sure (Fig. 6a). These locations are consistent with those
found in previous MEG studies [Hari and Forss, 1999].
The ‘1FO solution suggested activity also in the superior
temporal gyrus (blue arrow in Fig. 6a); however, this loca-
tion is unlikely to be activated in the median nerve stimu-
lation experiment.

Figure 6b shows an example of the source estimates for
the auditory data in one subject. All the different estimates
showed bilateral activity at primary auditory cortices in
the superior temporal gyrus, as expected for the N100m
response [Tuomisto, et al. 1983]. The ‘1SOC and ‘1FO solu-
tions showed physiologically unlikely activations at the
right middle temporal gyrus and left inferior parietal lobe.
The ‘1LOC solutions, both with the spatially varying LOC

parameter hi ¼ 1.5rh
i and with the constant value hi ¼ 32*,

showed little if any activation at these presumably incor-
rect locations.

The stability of ‘1LOC source estimates across subjects is
illustrated in Figure 7. Consistent with previous literature
[Hämäläinen et al., 1993; Hari and Forss, 1999], the ‘1LOC
estimates suggested strong contralateral activation in SI at
35 ms for the somatosensory data, and in the primary au-
ditory cortex at 86 ms for the auditory data in all three
subjects studied in each experiment. In one of the subjects,
the ‘1LOC estimates suggested inferior parietal activity,
which is considered physiologically unlikely in the audi-
tory experiment.

DISCUSSION

We refined sparse MEG source estimates by incorporating
loose orientation constraints directly into the cost function.
In simulations, the proposed ‘1LOC yielded source

Figure 6.
Source estimates for somatosensory and auditory MEG data.
Four different minimum ‘1-norm estimates are shown: ‘1SOC,
‘1FO, ‘1LOC with hi ¼ 1.5rh

i , and ‘1LOC with hi ¼ 32*. (a)
Somatosensory evoked responses in the left hemisphere at two
latencies, 21 and 87 ms after the right median nerve stimulation
in one subject (S1). (b) Auditory evoked responses in the left

and right hemispheres at 109 ms after tone stimulus onset (sub-
ject S4). The source strength was normalized to be between 0
and 1 for each map. Blue arrows indicate physiologically unlikely
source locations. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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estimates with low spatial dispersion, high localization ac-
curacy, and high source detection rates. The average spatial
dispersion and localization error of ‘1LOC were less than 10
mm, which was the average distance between two adjacent
sources in our study. With real MEG data, the ‘1LOC solu-
tions demonstrated physiologically reasonable source distri-
butions for somatosensory and auditory evoked responses.

The importance of taking into account information about
the source orientations has been noted for distributed
source estimates [Lin et al., 2006a] as well as for beam-
former spatial filtering techniques [Robinson and Vrba,
1999; Taniguchi et al., 2000]. In the present study, orienta-
tion constraints were integrated with the minimum
‘1-norm condition for distributed sources. The proposed
‘1LOC approach adjusts the source orientation automati-
cally and adaptively in the convex optimization procedure.
Hence, in contrast to MCELOC, the ‘1LOC approach
avoids the potential inaccuracy caused by propagation of
erroneous source orientations estimated by an initial calcu-
lation of an MNE solution.

The loose orientation constraint parameter hi can be set
variably or uniformly across the brain. In our simulations,
‘1LOC with a spatially varied hi ¼ 1.5rh

i and with a spa-
tially uniform hi ¼ 32* performed almost equally well. The
use of a constant hi will save the users of ‘1LOC from the

additional effort of acquiring a priori knowledge of the
orientation variance.

Accurate estimation of sources on the opposite sides of a
sulcus or a gyrus is challenging for any MEG and EEG
source modeling approach. For example, in Figure 6b, the
‘1LOC method had difficulty to differentiate activities
across the Sylvian fissure. One way to alleviate this problem
is to explicitly minimize the difference between neighboring
sources. Such technique has been implemented by integrat-
ing the ‘1-norm of the source estimates and the ‘1-norm of
the Laplacian-transformed source estimates into the cost
function [Chang et al., 2010]. Employing a Laplacian matrix
in the cost function penalizes the spatial difference between
the adjacent current sources on the cortical surface, and
therefore suppresses physiologically atypical, spatially dis-
connected activations in opposite banks of a sulcus.

Although we only analyzed MEG data in the present
study, in principle, the ‘1LOC method is applicable also to
EEG source estimation. Some differences between MEG
and EEG, however, may be expected in the interaction of
the orientation constraint and the localization error,
because MEG, but not EEG, is insensitive to one of the
source components (i.e., radial orientation with respect to
the skull) at most locations in the brain [Ahlfors et al.,
2010].

Figure 7.
Experimental results using ‘1LOC in different subjects. Maps of source estimates are shown (a)
at 35 ms after the somatosensory stimulus onset and (b) at 86 ms after the auditory stimulus
onset. S1 to S6 indicate different subjects. The estimates were normalized by dividing by the
maximum value in each map. [Color figure can be viewed in the online issue, which is available
at wileyonlinelibrary.com.]

r Sparse Current Source Estimation for MEG r

r 2199 r



In the present implementation, it took about one minute
to compute the ‘1LOC estimate for one time instant of
MEG data. The computation of a time sequence of the
‘1LOC estimates, like any approach that is applied inde-
pendently to each time point, can be accelerated by paral-
lel implementations [Nakata et al., 2006]. In contrast,
methods like the ‘1‘2-norm regularizer that uses temporal
basis functions to ensure the temporal continuity of
inverse solutions [Ou et al., 2009] cannot be easily
parallelized.

A possible future enhancement of the ‘1LOC method is
to develop measures of statistical inference, analogous to
the dynamic statistical parametric mapping (dSPM) for the
MNE [Dale et al., 2000]. In contrast to dSPM, statistical in-
ference for ‘1LOC cannot be obtained analytically. How-
ever, the minimum ‘1-norm constraint implicitly assumes
that the null distribution of current sources follows an ex-
ponential distribution [Uutela et al., 1999]. Hence, the
parametric statistical inference of ‘1LOC can be derived
using estimated parameters such as mean and standard
deviation of the null distribution using procedures
described by Pantazis et al. [2005].

CONCLUSIONS

We proposed ‘1LOC to estimate the orientation of cur-
rent source automatically during sparse inverse modeling.
The cost function explicitly penalizing the ‘1-norm of the
sources tend to result in focal source estimates. The ‘1LOC
estimates are spatiotemporally stable because the optimi-
zation problem includes a tolerance in the modeling resid-
ual error. As demonstrated by simulations and in vivo
MEG data, ‘1LOC has the capability to provide accurate
source localization and to enhance the spatial resolution
by reducing spatial dispersion. In summary, we consider
the ‘1LOC a useful method for integrating anatomical in-
formation into sparse source estimation.
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